Utilizing the International Space Station to enable humans to reach Mars

Utilizing the International Space Station to enable humans to reach Mars
© Getty Images

Over the past 20 years, the International Space Station (ISS) has housed more than 200 astronauts from 17 countries. The ISS has proven to be uniquely capable of enabling the development and testing of exploration technology and human physiology research for future Mars missions.

In the next 10 years the ISS can play a critical role in overcoming hurdles on the road to human exploration of Mars, not only as a laboratory for key research topics, but as the starting point for simulated Mars missions that take humans from a zero-G environment to Mars analog sites on Earth. Areas of research include environmental and life support systems, habitation module development, human factors, space nutrition, space suit testing, long duration human physiology, surface adaptation and rehabilitation, and much more. The ISS is a unique facility for solving scientific mysteries, and if we leverage everything it has to offer, it will accelerate our efforts to explore the solar system.

Integrated Mars mission analogs 


One unanswered question is how long it will take for astronauts to recover from their zero-gravity transit to Mars when they reach the martian surface. Currently, astronauts returning from the ISS are scooped up by support staff moments after they reach the Earth; however, astronauts will not have the same luxury on Mars. They will need to self-recover on a dangerous alien planet after six to nine months in a zero-g environment and begin work as soon as possible. Given this reality, it is necessary to understand how long astronaut recovery, both physical and mental, will take in order to design the architecture of future Mars missions to meet their needs. We can start to answer these questions with astronauts returning from the ISS now.

Mars missions will also require updates to the operations concepts, tools and processes astronauts need to enable their ground activities as quickly and safely as possible. Expeditions that simulate astronaut operations with time-delayed support teams will demonstrate where knowledge is lacking. These activities should be incorporated into upcoming ISS expeditions to maximize the benefits of the ISS while it is in orbit. Addressing these unknowns will allow us to buy down significant risk for the crews on their way to Mars.

To take full advantage of any of these tests, we need to start now. If humans are going to go to the martian system in the 2030s, it requires an understanding of what the crew will experience. Integrated analog missions, in harsh environments such as the dry valleys of Antarctica or the Arctic, which combine the above research areas, could potentially revolutionize our understanding of Mars mission operations.

Long duration spaceflight studies laboratory

The ISS is also useful for testing how humans will perform during deep space missions. Early Mars missions may be as long as 1,100 days from launch to Earth return for both orbital and surface missions. Whether by design or as a contingency plan, the crew could end up spending the entire duration in a zero-G environment. It is currently unknown how missions of this duration will affect astronaut health and performance. In fact, there are zero data points for long term human spaceflight beyond 438 days (Valeri Polyakov’s Mir mission in 1994), not even half the duration of the shortest Mars missions.


Missions such as The Year in Space, with Scott Kelly and Mikhail Korniyenko’s time aboard the ISS, have been key to understanding how long-duration space flight affects the human body and psyche. That being said, we need more data points to generate a statistically meaningful dataset from a diverse population if we are going to generalize the findings. 

The two-and-a-half hour exercise regimen currently employed on the ISS largely remediates the effects of bone loss and muscle deterioration on 6-month to 1-year missions. But, even if these problems prove manageable, there are still other challenges that we need to examine. For example, astronauts on the ISS can also experience vision blurring, renal stone formation, bone fractures and limited access to medical care, to name a few. How astronauts will overcome these and other unknown challenges that may arise as they extend their stay in space is currently unknown. But we can pursue more long duration missions on the ISS to find out.

A testbed for Mars mission equipment                 

ISS can also serve as a valuable testbed for Mars mission equipment such as for experiments and technology demonstrations that require microgravity, radiation or thermal space environments. Environmental control systems, 3D printing techniques, intelligent systems and many other technologies required for Mars exploration could be tested on the ISS today, in an in-space environment only hours away from the Earth’s surface. It is necessary to understand how new deep space systems withstand the rigors of exposure to a zero-G environment. In fact, many of these systems, such as urine processors, can be thoroughly tested only when there are humans regularly stressing the system.

Public outreach

The public wants NASA to do great things; they want to see humans explore the solar system. As NASA develops more comprehensive plans to send humans to Mars in the 2030s, the public would almost certainly be excited to see NASA testing equipment for the Mars Transfer Vehicle in orbit or to follow the progress of astronauts on simulated Mars missions from the ISS to a Mars analog site during the 2020s. Taxpayers will witness astronauts doing real training in preparation for Mars, and the public will even be able to experience the challenges of such missions firsthand, both through social media and augmented or virtual reality experiences currently in use in the space program.

The ISS is unique: it is nearby, it is active, but it will not last forever. If we are serious about ever going beyond the Earth system, we need to take advantage of our resources at hand. With the right expertise applied and supporting management structure, the ISS can expand the horizons of human space exploration. There are no other platforms in existence that provide the unique capabilities that the ISS offers. Abandoning the opportunity to use the ISS to the fullest extent of its capabilities will only slow us down and even stand in the way of the journey to Mars.

Chris Carberry is CEO of Explore Mars, Inc., and author of “Alcohol in Space.” Rick Zucker is vice president for policy, and member of the board of directors, of Explore Mars, Inc.